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ABSTRACT

Aim Coastal marine environments experience a wide range of biotic and abi-

otic forces that can limit and punctuate the geographical range and abundance

of species through time. Determining the relative strengths and nonlinear

effects of these processes is vital to understanding the biogeographical struc-

tures of species. There has been an ongoing discussion concerning the relative

importance of these processes in controlling the dynamics of giant kelp,

Macrocystis pyrifera, an important structure-forming species on shallow reefs in

the eastern Pacific. We used novel spatial time-series that span nearly three

decades to determine the dominant drivers of giant kelp canopy biomass and

the temporal and spatial scales over which they operate across the dominant

range of the giant kelp in North America.

Location Near-shore areas from A~no Nuevo, California, to the USA/Mexico

border.

Methods We employed empirical orthogonal functions to elucidate the pri-

mary drivers of giant kelp canopy biomass across space and time and then fit

generalized additive and linear models to determine the nonlinear effect and

relative importance of each of these potential drivers along the c. 1500-km

study region over a 25-year period.

Results Wave disturbance, nitrate availability and the state of the North Paci-

fic Gyre Oscillation were the most important environmental predictors of giant

kelp canopy biomass, explaining 24.5%, 12.7% and 6.1% of the variance,

respectively. Environmental drivers of canopy biomass exhibited profound spa-

tial differences in relative effect sizes. Nonlinear effect shapes of each potential

biomass driver were determined, which explained these spatial differences.

Main conclusions These large-scale analyses help to reconcile the local-scale

conclusions of canopy biomass dynamics across the California coastline and

show that these dynamics differ predictably in space and time in accordance

with local and regional differences in environmental drivers. By characterizing

the nonlinear effects of these drivers, we identified spatio-temporal patterns of

processes that cannot be detected by remote sensing.
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INTRODUCTION

The spatial distributions of organisms are driven by a combi-

nation of abiotic and biotic forces. Abiotic forces include cli-

mate, physical features of the environment and resource

availability, whereas biotic forces involve the physiological

performance of individuals as well as interactions within and

between species. The influence of these processes may change

in direction and magnitude across a wide range of spatial

and temporal scales (Menge, 1976). This variability has led

to seemingly contradictory conclusions about the primary

drivers of population abundance in a number of systems

(reviewed in Power, 1992).

Marine coastal environments experience a wide range of

forces that can limit and punctuate the geographical range

of an organism through time. For example, the distributions

of two species of mussel (Mytilus edulis and Mytilus trossulus)

in the north-eastern Atlantic can be partly attributed to

physiological stress caused by aerial exposure, whereas inter-

annual variations in ice floes can interrupt the density trends

along the mussels’ range (Tam & Scrosati, 2011). Coastal

environments also experience large-scale changes in ocean

climate, which can fundamentally alter the distribution of a

species. The northward range expansion of Kellet’s whelk

(Kelletia kelletii; Herrlinger, 1981) has been attributed to

either warming sea-surface temperatures (SST), ocean circu-

lation changes, or some combination of the two, across a

biogeographical boundary, probably linked to El Ni~no events

(Zacherl et al., 2003). The complexity of the coastal environ-

ment may further complicate the mixture of drivers on a

species through time.

The coastline of California, USA, spans four shallow mar-

ine biogeographical regions (Hall, 1964; Valentine, 1966; Ab-

bott & Hollenberg, 1976; Blanchette et al., 2008), which are

marked by differences in oceanographical environments: the

Mendocinian, Montereyan, Southern Californian and Ense-

nadian regions. Winter storms in the North Pacific create

large swell waves (> 4 m height) propagating from the

north-west, whereas summer months see a mixture of smal-

ler significant wave heights (< 3 m) from the south and

north-west (O’Reilly & Guza, 1993). The central coast of

California (A~no Nuevo to Point Conception) is more

exposed to westerly and north-westerly swells as a result of

its orientation, whereas the southern California mainland

coast (Point Conception to the USA/Mexico border) has a

range of wave exposures as a result of variable coastline ori-

entations as well as the presence of the Californian Channel

Islands. Coastal upwelling brings cold, nutrient-rich waters

to the coastal shelf, and is strongest in the spring along the

central coast, where nutrient-replete conditions persist for

the entire year; upwelling is less intense and more intermit-

tent in southern California, with low nutrient levels during

the summer (Huyer, 1983; McPhee-Shaw et al., 2007; Reed

et al., 2011). Large-scale low-frequency climate cycles, such

as the Pacific Decadal Oscillation and El Ni~no–Southern
Oscillation (ENSO), affect conditions on interannual

time-scales and can have large impacts on the biogeography

and structure of marine communities (Dayton et al., 1999;

Parnell et al., 2010).

The giant kelp, Macrocystis pyrifera (L.) C. Agardh, is a

canopy-forming macroalga that is widely distributed along

the coast of California and serves as the foundation species to

a productive ecosystem (Graham et al., 2007). Giant kelp

abundance in California is extremely dynamic. It is highly

susceptible to removal by ocean waves and it is not uncom-

mon for entire forests to be destroyed during a single storm

(Seymour et al., 1989; Graham et al., 1997; Edwards & Estes,

2006); populations are, however, highly resilient, and recovery

to a full canopy often occurs within 1–2 years after local

extinction (Reed et al., 2006). Individuals routinely attain

lengths over 20 m and under ideal conditions can elongate at

rates of 50 cm per day (Clendenning, 1971), which implies an

important role for nutrient supply to support these extreme

growth rates (Jackson, 1977; Gerard, 1982; Zimmerman &

Kremer, 1984; Stewart et al., 2009). Large areas of kelp forest

can be destroyed by grazing activities, primarily by sea urch-

ins, which can denude large areas (Harrold & Reed, 1985),

and the removal of the surface canopy by mechanized har-

vesters causes additional reductions in kelp biomass (Kimura

& Foster, 1984; Foster & Schiel, 2010). Importantly, the pro-

cesses thought to dominate the regulation of giant kelp for-

ests can vary with location and time (e.g. Jackson, 1977;

Dayton et al., 1992, 1999; Graham et al., 1997; Edwards,

2004; Lafferty & Behrens, 2005; Parnell et al., 2010; Cava-

naugh et al., 2011; Reed et al., 2011). This suggests that the

interplay between regulating forces may be understood by

studying the spatial distribution of this species through time.

Recent advances in satellite image analyses allow for fre-

quent (monthly to seasonal), long-term (25 years and

continuing), high-resolution (30 m), large-scale (continental)

observations of giant kelp canopy biomass (Cavanaugh et al.,

2011). These kelp data can be combined with spatially expli-

cit time-series of potential drivers to quantify the effects of

these drivers on giant kelp biomass across a wide geographi-

cal region. Here, we used these data to explore how nutri-

ents, wave disturbance, low-frequency oceanographical cycles,

human harvest and herbivory by sea urchins structure the

spatial distribution of giant kelp biomass through time,

across the species’ region of dominance on the rocky reefs of

California, USA. Our research focused on answering the fol-

lowing questions. (1) What are the dominant drivers of kelp

canopy biomass dynamics? (2) How does the relative impor-

tance of these drivers vary across temporal scales of seasons

to decades and spatial scales of 500 m to 1500 km?

MATERIALS AND METHODS

Giant kelp canopy biomass data

We studied giant kelp over its range of dominance along the

coast of California, USA, encompassing the area between

A~no Nuevo, California, and the USA/Mexico border
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(c. 1500 km of coastline; Fig. 1). Giant kelp canopy biomass

was estimated at 30-m resolution from January 1986 to Janu-

ary 2011 using multispectral Landsat 5 Thematic Mapper

(TM) satellite imagery following procedures developed by

Cavanaugh et al. (2011). Briefly, each Landsat 5 TM image

was atmospherically corrected to standardize the radiometric

signals using 50 temporally stable ground control points

(Furby & Campbell, 2001). Multiple-end-member spectral

mixing analysis (Roberts et al., 1998) was applied to estimate

the fractional cover of two end-members: one static kelp

end-member, and one of 30 seawater end-members unique

to each image. Kelp canopy biomass was estimated using the

observed relationship between diver-estimated kelp canopy

biomass and Landsat pixel kelp fraction. Cloud-free imagery

allowed kelp biomass to be estimated every 1–2 months.

Canopy biomass determinations were binned into 500 m

segments and interpolated onto a 3-month time interval

using piecewise cubic interpolation. The segment length of

500 m was chosen to avoid spatial autocorrelation, because

synchrony among canopy biomass observations declines dra-

matically in the first 200 m of spatial separation (Cavanaugh

et al., 2013). Each segment was scaled as a proportion of the

maximum (top 3%) canopy biomass observed across the

entire time-series to account for differences in the amount of

kelp (referred to here as ‘proportional kelp biomass’). Coast-

line segments with zero canopy biomass in more than 75%

of seasons were removed from analysis, for a total of 723

coastal segments.

Physical, biological and harvest datasets

Spatio-temporal data were compiled for variables that are

anticipated to describe processes affecting giant kelp canopy

biomass. Observations of significant wave height (Hs) were

assessed using the National Buoy Data Center’s (NBDC;

http://www.ndbc.noaa.gov/) Harvest platform and Harvest

(a)

(c)(b)

Figure 1 (a) Mean giant kelp canopy

biomass at every 500-m coastline segment
across every measured season, from 1986 to

2011, along the coast of California, USA.
The star shows the approximate location of

the Harvest platform and buoy, Point
Arguello buoy, and Point Conception (plate

carr�ee projection). (b) Mean kelp canopy
biomass plotted as lines running from south

to north, including the Channel Islands
inside the horizontal dashed lines. Site

locations for each island start at the location
of the arrow and proceed clockwise around

the island. (c) The coefficient of variation
(CV) of kelp canopy biomass at each

coastline segment across all seasons and
years.
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buoy, located c. 30 km offshore from Point Conception

(Fig. 1a). The Harvest platform collected hourly observations

of Hs and period from January 1987 to April 1999, and the

Harvest buoy collected Hs, period and direction from March

1998 to present. Records from the platform and buoy were

combined to form a single Hs time-series at the Harvest plat-

form. Data from the Coastal Data Information Program’s

(CDIP; http://cdip.ucsd.edu/) nowcast wave-propagation

model were used to assess spatial variations in Hs. CDIP pro-

vided hourly estimates of Hs at a depth of 10 m from June

1998 to November 2011 for the entire domain at 800-m spa-

tial resolution. Each coastline segment was assigned a sea-

sonal maximum Hs from the closest CDIP wave-model pixel.

To complete the record, Hs values were statistically modelled

using a generalized additive model from observations of Hs

and dominant period from the Harvest platform, and a

probability distribution of swell direction (see Appendix S1

in Supporting Information).

Surface nitrate concentrations were estimated using sea-

surface temperature (SST) records and the observed relation-

ship between ocean temperature and nitrate concentration

following Zimmerman & Kremer (1984). A continuous time

series of SST is available near the centre of the domain from

the NBDC Point Arguello buoy (hourly from 1986 to 2011)

located c. 20 km offshore from Point Arguello, and at each

site from the Advanced Very High Resolution Radiometer

(AVHRR; http://www.ncdc.noaa.gov/sst/) satellite images

from 1987 to 2011. Seasonal mean nitrate values were deter-

mined for each coastline segment.

Three oceanographical climate indices were also used in

this study: the North Pacific Gyre Oscillation (NPGO; http://

www.o3d.org/npgo), Pacific Decadal Oscillation (PDO;

http://jisao.washington.edu/pdo), and the Multivariate ENSO

index (MEI; http://www.esrl.noaa.gov/psd/enso/mei). These

climate oscillations fluctuate over interannual to decadal

time-scales and are known to have large effects on the Cali-

fornia Current system in general and on giant kelp popula-

tions in particular (Dayton & Tegner, 1984; Di Lorenzo

et al., 2008; Parnell et al., 2010). Positive values in the

NPGO index correspond with stronger wind-driven upwell-

ing, which leads to greater nutrient concentrations along the

California coast, whereas positive MEI values are associated

with El Ni~no conditions, with decreases in wind-driven

upwelling, warmer surface waters and nutrient-poor condi-

tions. Positive PDO values indicate warmer SST, and nutri-

ent-poor conditions along the western coast of the

contiguous United States. All environmental variables were

lagged by one season, because wave disturbance and changes

in nutrient concentrations were expected to affect giant kelp

canopy biomass over relatively short time-scales.

Kelp canopy harvest records for every California Depart-

ment of Fish and Wildlife administrative bed harvested by

ISP Alginates were available from 1991 until harvesting

ended in 2006 (Reed, 2010). In order to calculate the

amount of harvest effort in each coastline segment, the

harvested kelp was apportioned to each segment based on

the proportion of total kelp canopy biomass of the segment

within the administrative bed. The amount of kelp harvested

was then divided by the total segment kelp canopy biomass

in the season prior to obtain a measure of harvest effort,

ranging from zero (no harvest) to one (complete harvest of

the kelp canopy).

Densities of purple and red sea urchins (Strongylocentrotus

purpuratus and Mesocentrotus franciscanus, respectively) were

measured at a small fraction of the sites (Kenner et al., 2013;

Kushner et al., 2013; Reed, 2013). Annual sea urchin density

surveys started between 1982 and 2001 for the 45 sites with

records long enough to be included in the analyses (see

Appendix S1).

Empirical orthogonal function analysis

Dominant drivers of kelp canopy biomass were identified

using an empirical orthogonal function (EOF) analysis (Lor-

enz, 1956). EOF analysis compresses a set of correlated time-

series into a ranked set of uncorrelated ones, each with a

spatial map illustrating the loadings for that mode. EOF

modes were ordered by the fraction of variance explained.

Here, we decomposed the space–time distribution of kelp

canopy biomass into a ranked set of orthogonal spatial load-

ings and temporal amplitude functions. Each EOF mode

described a known fraction of the total variance in kelp can-

opy biomass and collectively accounted for the covariability

of the space–time biomass distribution. A physical interpre-

tation for each mode was made by examining the relation-

ships between the EOF spatial loadings and temporal

amplitude functions with the different environmental param-

eters. Pearson product-moment correlation coefficients

between environmental variables and the EOF temporal

amplitude function indicate how closely the variable matched

the changes in direction and magnitude of the amplitude

function through time, whereas correlations with the EOF

spatial loadings indicate how closely the variable matched

the magnitude of the loadings in space. Significance between

EOF outputs and environmental variables was tested using

permutation tests with 1000 permutations.

Generalized additive model analysis

A generalized additive model (GAM) was applied to each

coastline segment in the study domain in order to determine

the dynamic relationships between kelp canopy biomass and

the environmental drivers. The general concept of GAMs is

that a response variable (e.g. kelp biomass) can be modelled

as the sum of nonlinear functions of different predictor vari-

ables (Hastie & Tibshirani, 1990). The underlying relation-

ship between each predictor variable and kelp canopy

biomass was determined using thin-plate penalized regression

splines, which adds penalties to wiggly functions to avoid

overfitting (Wood & Augustin, 2002). The weight of these

penalties was optimized using generalized cross-validation,

which minimizes the root mean square error between the fit
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and data points. Optimal model form was selected by mini-

mizing the Akaike information criterion, which helps balance

the complexity of the model versus the goodness of fit. We

used the R package mgcv 1.8-6 to implement all GAMs with

a = 0.05 (Wood, 2006). Standardized coefficients of each sig-

nificant predictor were estimated at each coastline segment

by using a multiple linear regression to fit each z-score scaled

(mean, 0; variance, 1) variable to scaled proportional kelp

canopy biomass.

The environmental correlates identified in the EOF analy-

sis – maximum significant wave height, mean nitrate concen-

tration and the value of the NPGO – were used as predictors

in local GAMs for each coastline segment all lagged in time

by one season (log link function; Gaussian error structure).

Harvest effort was also added as a predictor to the model for

the known harvested coastline segments, and a kelp occu-

pancy term (the proportion of kelp canopy biomass in the

previous season) allowed kelp canopy biomass to respond

according to prior occupancy at each segment. Sea urchin

density was added to the predictors already included in the

GAM at sites with urchin observations (see Appendix S1 for

details of the GAM method and predictions).

RESULTS

Spatio-temporal variability in kelp biomass

Giant kelp canopy biomass was variable throughout the

study area with mean seasonal biomass per 500 m coastline

segment ranging between 1000 and 1.37 9 106 kg wet mass

(Fig. 1a,b). The mean coefficient of variation (CV) averaged

across all measured seasons was 1.4 for the entire study

region and rarely dropped below 1 in any 500-m coastline

segment, demonstrating the high variability of giant kelp

canopy biomass during the 25-year study period (Fig. 1c).

Marked spatial differences in CV were found between differ-

ent sides of islands and between protected and exposed areas

on the mainland. The study region supported a mean kelp

canopy biomass of 1.39 9 108 kg, which ranged from a

maximum of 4.14 9 108 kg in the autumn of 2005 to a

minimum of 4.74 9 106 kg in the spring of 1998, following

winter storms during a large El Ni~no episode.

Diagnosing correlates of kelp biomass dynamics

EOF spatial loadings and temporal amplitude functions were

linearly correlated with environmental variables, revealing the

dominant environmental processes that drive variations in

giant kelp biomass (Table 1). The first mode explained 24.5%

of the variance and its temporal variations displayed a clear

seasonal pattern, with positive values in the winter and spring

and negative values in the summer and autumn. This ampli-

tude time-series was significantly correlated with maximum

Hs during the previous season from the Harvest buoy

(r = 0.59; P < 0.001; Fig. 2a). The spatial loadings of the first

mode revealed large negative values for the central coast and

values near zero throughout much of southern California

with exceptions on the exposed sides of the Channel Islands

(Fig. 2b). Mean seasonal maximum Hs along the California

coast from the CDIP Hs model was strongly correlated with

the spatial loadings (r = �0.69; P < 0.001), implying that

swells have a large negative effect on kelp biomass throughout

the central coast and much less of an impact in southern Cali-

fornia, except for exposed sites. The loadings were signifi-

cantly correlated with site-specific maximum Hs in both time

and space; the overwhelmingly negative spatial loadings across

the study area were indicative of negative effects on kelp bio-

mass during winter and spring, the seasons in which the tem-

poral amplitude function of the first EOF was positive.

The second EOF mode explained 12.7% of the biomass

variance and its temporal amplitude function also displayed

a strong seasonal pattern (Fig. 2c). This amplitude time-ser-

ies was significantly correlated with mean nitrate concentra-

tions in the surface waters during the previous season from

the Point Arguello buoy (r = 0.49; P < 0.001), with positive

amplitude during winter and spring periods of high nitrate,

and negative mode amplitudes during summer and autumn

periods of low nitrate. The second mode spatial loadings

displayed positive values in southern California and values

near or below zero along the central coast (Fig. 2d). These

Table 1 Correlation coefficients between empirical orthogonal function temporal mode amplitude functions/spatial loadings and

physical and oceanographical variables. Mean nitrate concentrations estimated from sea-surface temperature. Bold values are significant
at P < 0.05.

Temporal amplitude

function

Proportion of

variance (%)

Max. significant

wave height (Hs)

Mean

nitrate

North Pacific Gyre

Oscillation index

Pacific Decadal

Oscillation index

Multivariate

ENSO index

Southern

Oscillation index

1 24.5 0.592 0.358 0.089 �0.188 0.025 �0.018

2 12.7 0.105 0.490 0.013 �0.021 �0.142 0.187

3 6.1 �0.066 �0.115 0.436 �0.028 �0.354 �0.025

Spatial loadings Spatial max. Hs Spatial mean nitrate % < 1 lmol L�1 nitrate

1 �0.687 �0.762 0.725

2 �0.648 �0.727 0.655

3 0.088 �0.244 0.391
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loadings were significantly correlated with all of the spatial

variables (P < 0.001), but only mean seasonal nitrate along

the California coast was consistent with the positive spatial

loadings throughout most of the study area (r = �0.73;

P < 0.001). This correlation suggests that higher nitrate con-

centrations correspond to positive kelp biomass levels in

areas with lower mean nitrate (e.g. southern California).

The third mode explained 6.1% of the biomass variance

and the temporal amplitude function displayed interannual

changes that were significantly correlated with the NPGO

index during the previous season (r = 0.44; P < 0.001;

Fig. 2e). The third mode spatial loadings showed the highest

positive values along the south-eastern corner of southern

California, San Clemente and Santa Catalina Islands, which

are the most oligotrophic regions of the study region, and the

northern half of the central coast (Fig. 2f). Positive values of

NPGO are related to periods of high nitrate availability (Di

Lorenzo et al., 2008). The spatial loadings were significantly

(a) (b)

(c) (d)

(e) (f)

Figure 2 First (a), second (c) and third (e) temporal amplitude functions from the empirical orthogonal function analysis of giant kelp
canopy biomass dynamics along the coast of California, USA. Spatial time series as solid lines and temporally correlated physical and

oceanographical variables as dashed lines, (a) maximum significant wave height (Hs), (c) mean nitrate, and (e) North Pacific Gyre
Oscillation index. Mean nitrate concentrations estimated from sea-surface temperature. These three modes explain 24.5%, 12.7% and

6.1% of the total variance, respectively. First (b), second (d), and third (f) spatial loadings as solid lines with spatially correlated
environmental variables as dashed lines, (b) mean seasonal maximum Hs, (d) mean nitrate, and (f) percentage of seasons where mean

nitrate < 1 lmol L�1. All correlations shown are significant at P < 0.001.
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correlated with the percentage of seasons with a mean

surface nitrate concentration below 1 lmol L�1 (r = 0.39;

P < 0.001), the minimum threshold concentration needed to

sustain kelp growth (Zimmerman & Kremer, 1984).

Modelling drivers of biomass dynamics

A total of 723 coastline segments (500 m each) were analysed

using individual GAMs. The R2 of the individual segment

models ranged from 0.09 to 0.79 (Fig. 3a), with an ensemble

mean R2 equal to 0.41. Standardized coefficients of each sig-

nificant predictor were estimated for each coastline segment

using a linear model to fit each variable to proportional kelp

biomass (Fig. 3b–g; Table 2). At the 470 southern California

coastline segments, maximum Hs was the best predictor at

36.8%, mean nitrate at 28.9%, NPGO at 5.3%, kelp harvest at

9.2%, and no significant predictor at 19.8% of the sites. Of

the 253 central California segments, maximum Hs was the

best predictor at 91.7%, mean nitrate at 5.5%, no significant

predictor at 1.6%, and NPGO at 1.2% of the sites. Sea urchin

density had the greatest magnitude-standardized coefficient at

9 of the 36 southern California sites and none of the central

California sites, although southern California segments where

sea urchin density was measured had lower median winter

wave heights (0.94 m) than southern California as a whole

(1.23 m; P < 0.001; Wilcoxon rank-sum test).

The mean additive effect of each predictor variable on pro-

portional kelp biomass was found by averaging the individual

effect relationships of each predictor from all coastal segments

where the predictor was statistically significant (Fig. 4). These

plots show the mean direction and magnitude of each predic-

tor on kelp biomass. The mean relationship with seasonal max-

imum Hs was nonlinear and negative and showed the largest

magnitude of effect, with larger swell having a negative effect at

(a)

(e) (f) (g)

(b) (c) (d)

Figure 3 (a) Variance of giant kelp canopy biomass explained by a generalized additive model at each site, along the coast of
California, USA. Vertical line is the ensemble mean R2. (b–g) z-score standardized coefficient of each significant (a = 0.05) predictor

(maximum significant wave height (Hs), mean nitrate, North Pacific Gyre Oscillation index (NPGO), kelp occupancy, harvest effort, and
sea urchin density) at each site. Mean nitrate concentrations estimated from sea-surface temperature. Sea urchin density observations

were available from 45 of the 723 sites. Areas inside dashed lines represent the offshore Channel Islands.

Table 2 Mean z-score standardized coefficient, for each tested

environmental predictor of giant kelp canopy biomass, across all
significant coastline segments as well as the percentage of

coastline segments where the predictor was significant at
a = 0.05. Mean nitrate concentrations estimated from sea-

surface temperature. Sea urchin density was investigated at 45 of
the 723 sites.

Predictor

Mean model

coefficient

Proportion

significant (%)

Max. significant

wave height

�0.421 67.1

Mean nitrate 0.223 49.0

North Pacific Gyre

Oscillation index

0.085 21.7

Kelp occupancy 0.384 88.7

Harvest effort �0.003 18.3

Sea urchin density �0.212 42.2
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maximum Hs > 2.5 m. The mean relationship with nitrate

showed a negative effect between values of 0 and 2 lmol L�1

and positive effects at concentrations above about 6 lmol L�1.

The NPGO index displayed a nonlinear effect relationship with

biomass, with larger positive index values showing an increas-

ing positive effect. Kelp occupancy showed a positive mean

relationship with biomass, with greater biomass in the previous

season showing positive effects at values greater than 0.1 pro-

portional biomass. Kelp harvesting showed a small positive

effect at values below 0.8 harvest effort, whereas increases in

harvesting effort beyond this point had a negative effect. Sea

urchin density showed negative, but diminishing, additive

effects on kelp biomass as urchin density increased.

DISCUSSION

Spatial heterogeneity in drivers of canopy biomass

dynamics

Understanding how consumer pressure, resource availability

and disturbance control the dynamics of plant and algal pop-

ulations is challenging, because the roles of these processes

can vary in space and time (Estes & Palmisano, 1974; Menge,

1976; Hunter & Price, 1992; Reed et al., 2011). Here, we

have used EOF analysis and nonlinear additive modelling to

identify and quantify the relative strengths of these

population drivers. For the California coastline as a whole,

wave disturbance was the dominant correlate of kelp canopy

biomass, followed by nitrate availability and the state of the

NGPO. However, the relative importance of these factors

varied spatially. Studies that focus on one or a few sites may

identify how these factors relate to one another locally, but

will miss how these relative effects vary spatially. By examin-

ing hundreds of local coastline segments across many hun-

dreds of kilometres and over many generations, a

comprehensive understanding of how these factors contribute

to the canopy dynamics of giant kelp can be achieved.

Wave disturbance events are larger and more frequent along

the central coast than the more protected southern California

coastline, and thus represent a greater and more consistent dri-

ver of biomass along wave-exposed coastline (Reed et al.,

2011). Wave disturbance showed an increasingly negative

effect on kelp biomass at Hs > 2.5 m (Fig. 4). We saw a clear

increase in the magnitude of the surface wave disturbance coef-

ficient north of Point Conception, where the mean maximum

winter Hs among all central coast sites was 3.3 m. Wave distur-

bance can also have a large effect on kelp biomass throughout

southern California, such as the large storm events associated

with El Ni~no episodes (Dayton & Tegner, 1984), although large

wave events are less frequent in southern California (7.7 sea-

sonal maximum events above 2.5 m per coastline segment in

southern California, versus 39.7 in central California during

Figure 4 Additive effect of each environmental predictor variable on the site-specific generalized additive giant kelp canopy biomass
model over the measured range of each predictor along the coast of California, USA (maximum significant wave height (Hs), mean

nitrate, North Pacific Gyre Oscillation index (NPGO), kelp occupancy, harvest effort, and sea urchin density). The solid line is the mean
effect of the predictor and the shaded regions show the 95% confidence intervals across all sites where the predictor was significant at

a = 0.05. The frequency of each variable through space and time is shown by the histogram at the bottom of each effect plot. Mean
nitrate concentrations estimated from sea-surface temperature. Sea urchin density observations were available from 45 of the 723 sites.
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the period of study) and thus explained a smaller amount of

variation in kelp dynamics in southern California.

The frond elongation rate is reduced at low nitrate con-

centrations, and surface water nitrate concentrations (as

estimated from SST) showed a significant positive relation-

ship with canopy biomass at 49% of the sites across the

entire study region (Zimmerman & Kremer, 1984). It was,

however, the dominant correlate only at protected sites along

the central coast or in southern California, where wave dis-

turbance is reduced. Mean nitrate displayed negative effects

on biomass at low concentrations and positive effects at high

concentrations, with little effect at intermediate levels (2–6
lmol L�1; Fig. 4). Although canopy persistence depends on

many factors (Rodriguez et al., 2013), in the absence of peri-

odic removal by disturbance, kelp forests can maintain a

canopy throughout the year and may be primarily influenced

by interannual cycles of nutrient availability (Parnell et al.,

2010). Periods of high nutrient concentrations have been

associated with increased kelp growth (Gerard, 1982; Zimm-

erman & Kremer, 1984; Stewart et al., 2009), and the shoal-

ing of high-density, nutrient-rich waters over the inner shelf

explains much of the interannual variation in kelp plant den-

sity in the southern end of the study area (Parnell et al.,

2010). Interannual variation in nutrient concentrations is

associated with changes in the state of the NPGO, which

operates over interannual time-scales and is characterized by

increased upwelling and horizontal advection of cool waters

from the north, extending to the southern Channel Islands

(Di Lorenzo et al., 2008). These increased incursions of cold,

nutrient-rich waters into the Southern California Bight may

be partly responsible for the episodic dynamics of kelp for-

ests in regions that are usually defined by oligotrophic condi-

tions, such as San Clemente and Santa Catalina islands and

the lower portion of the southern California mainland coast

(Kopczak et al., 1991; Di Lorenzo et al., 2008). Positive

values of the NPGO index display positive effects on kelp

biomass, with values above 1.4 having increased positive

effects (Fig. 4). Although El Ni~no variations were not pri-

marily correlated with any of the kelp biomass EOFs, the

wave disturbance and nutrient conditions typical of these

events may have been partly explained within the first three

EOF temporal amplitude functions, where interannual varia-

tion in the strength of each seasonal cycle is evident, espe-

cially during strong El Ni~no episodes.

Top-down effects by grazing sea urchins have been

hypothesized to have increased in the past two centuries as a

result of human-induced alteration of kelp forest food webs.

This resulted from the extirpation of sea otters by hunting

and overfishing of predatory species of fish and invertebrates,

and may have led to increased abundances of sea urchins

and other kelp grazers (Estes & Palmisano, 1974). Our

results show that higher sea urchin densities were associated

with decreases in kelp canopy biomass and sea urchin den-

sity was the dominant correlate at 25% of the sites with

long-term sea urchin records in southern California. For cen-

tral-coast segments where urchin observations were available,

sea urchin density was 20 times lower than in southern Cali-

fornia. At two of the three central coast segments where the

sea urchin density was significantly correlated with kelp bio-

mass, a positive relationship was observed, indicating that

increased kelp may be supporting greater numbers of sea

urchins. This reinforces the notion that the top-down grazing

by sea urchins is an important local-scale driver of kelp bio-

mass in southern California, but not in central California in

areas where sea otters are prevalent (VanBlaricom & Estes,

1988; Reed et al., 2011).

Addressing unknown drivers

The modelling of the biogeographical structure of a species

requires an understanding of the relative importance of the

causative environmental drivers (Fenberg et al., 2014).

Figure 5 Giant kelp canopy biomass (solid
line) at the Carpinteria kelp forest site, near

Santa Barbara, California, compared with
the model predictions (dashed line) based

on relationships with wave disturbance,
nitrate concentrations, North Pacific Gyre

Oscillation index, and kelp occupancy.
Annual sea urchin density is shown as black

dots (Reed, 2013).
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Remotely sensed and modelled datasets can provide insight

into the mechanisms that cause populations to fluctuate at

different spatial and temporal scales. Data for some poten-

tially important covariates, such as sea urchin density,

require time-consuming diver surveys, however, which limits

their spatial and temporal extent. Furthermore, records for

some predictor variables, such as kelp harvest, may not

extend throughout the entire time-series. The lack of com-

prehensive data on such drivers limits our ability to fully

understand the processes that control the dynamics and dis-

tribution of the species we study.

Here, we use observations from a time-series of giant kelp

canopy biomass and its major environmental drivers (e.g.

wave heights, nitrate concentrations and oceanographical

conditions) to model kelp biomass dynamics across a 1500-

km stretch of the California coast. Sustained departures

between these model predictions and observations may indi-

cate the occurrence of unknown processes that have a signifi-

cant impact on kelp biomass. An example can be seen at the

Carpinteria kelp forest near Santa Barbara, California, where

the time-series of sea urchin density was not included in the

model (Fig. 5). From 1998 to 2005, kelp canopy was com-

pletely absent from the Carpinteria coastline segment, but

the model predicted multiple cycles of kelp growth and

removal during this absence. Sea urchin abundance was espe-

cially high during this absence of kelp canopy, suggesting

that top-down grazing pressure overwhelmed the effects of

wave disturbance and nutrient availability during this period.

The detection of model mismatch throughout the time-ser-

ies may provide a path for the elucidation of unknown or

poorly-known environmental drivers. By relating the degree

and duration of model–data mismatches to predictors mea-

sured at local-scale sites, one can infer where and when addi-

tional forces are likely to be dominant. This can lead to directed

sampling efforts or the inference of the progression of drivers

through time and space, providing additional insights into the

importance of unknown factors in controlling populations.

Understanding the spatial heterogeneity of processes that

exert control over populations remains a major focus for

landscape ecology and biogeography (Turner, 1989). Our

results demonstrate the importance of multiscale analyses of

ecosystem dynamics. A variety of known and unknown envi-

ronmental and biotic forces interact to structure these sys-

tems, which vary not only through time, but also in space.

This spatial variability has the potential to lead to conflicting

conclusions concerning the relative importance of different

factors, as many studies investigating biomass and popula-

tion dynamics are conducted in relatively small plots, in a

small portion of a species’ geographical range. Large-scale,

long-term, persistently sampled datasets allow for a compre-

hensive characterization of spatial and temporal variability

and the factors that influence this variability. Results from

such studies inform not only what has happened in the past,

but allow one to infer how future changes in drivers may

disproportionately affect certain locations or regions.
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